# 创建独立Python虚拟环境(避免库冲突)python3 -m venv qwen-envsource qwen-env/bin/activatepip install --upgrade pip setuptools wheel# 安装适配国产架构的核心依赖pip install transformers torch datasets accelerate# 若遇安装失败,使用conda或手动编译wheel包conda install pytorch torchvision torchaudio cpuonly -c pytorch# 从Hugging Face拉取Qwen2.5模型(需联网)from transformers import AutoModelForCausalLM, AutoTokenizermodel = AutoModelForCausalLM.from_pretrained("qwen/Qwen2.5-7B-Instruct")tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen2.5-7B-Instruct")# 转换为ONNX格式(提升跨平台兼容性)import torch.onnxdummy_input = tokenizer("测试输入", return_tensors="pt")torch.onnx.export(model, (dummy_input["input_ids"],), "qwen25.onnx", input_names=["input_ids"], output_names=["logits"])from onnxruntime import InferenceSession# 启用国产NPU执行提供器session = InferenceSession("qwen25.onnx", providers=['MluExecutionProvider', 'CpuExecutionProvider'])# docker-compose.yaml配置version: '3'services: qwen25: image: vllm/vllm-openai:v0.6.4 volumes: - ./model:/opt/model command: --model /opt/model --tensor-parallel-size 1 deploy: resources: reservations: devices: - driver: nvidia count: 1 capabilities: [gpu]优化维度 | 操作方法 | 性能提升效果 |
模型层面 | 启用 FP16 精度、图层融合 | 推理速度提升 30%-50% |
硬件层面 | 配置 GPU 显存分片、启用 PIN_MEMORY | 内存占用降低 20% |
服务层面 | 使用 Triton Inference Server 负载均衡 | 并发处理能力提升 2 倍 |